Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26918, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463900

RESUMO

The presence of strong G x E (genotype by environment interaction) is a major hurdle for selecting superior genotypes when genotypes are placed into new and unfamiliar production systems. Genotype or cultivar (s) with high yield potential and having less adaptability and stability to particular environment is never a suitable choice for a breeder and farmer particularly. Purposefully, four successive seasons were chosen to enumerate the phenotypic stability of 27 French bean genotypes for yield and quality traits by involving modern statistical tools like AMMI (Additive Main Effect and Multiplicative Interaction), GGE [G + (G x E)] and cluster analysis. AMMI analysis of variance witnessed magnitude of G, E and G x E was 81.94%, 11.58% and 6.48% of the total variation respectively. The IPCA I (Interaction Principal Component Axes) was contributed with 55.44%, 73.60%, 71.81%, 81.69% and 72.16% G x E variations of days to 50% flowering, pod length, number of pods per plant, average pod weight and pod yield respectively. For qualitative traits i.e., protein content (mg/100g FW), total soluble solids (%) and total phenol content (mg GAE/g FW) the involvement of IPCA I to total genotype by environment interaction variations were 89.55%, 96.07% and 66.52% respectively. The AMMI biplot revealed French bean genotypes viz., IC632961, Arka Sukomal, IIHR-PV-29, IIHR-PV-30 having low AMMI stability value and higher mean value for relevant yield and quality traits in both late kharif and rabi as two mega-environments. Multivariate analysis demonstrated significant higher contribution of pod yield associated traits towards total variations and positive correlation between them. The 27 French bean genotypes formed five groups as per Euclidean distance and the clustering revealed the nature of diversity of French bean genotypes viz., IC 632961, IIHR-B-PV-24, Arka Sukomal, Arka Arjun, Ayoka and Phalguni in response to changing environments and can be utilized in future breeding programme. The study revealed pole type French bean genotypes viz., IC 632961, Arka Sukomal and bush type French bean genotypes viz., IIHR-B-PV-29, IIHR-B-PV-30 could be promising for utilization in future breeding programmes for the concerned traits.

2.
Plant Pathol J ; 32(6): 519-527, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27904458

RESUMO

Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession 'CBT-Ac77' and cultivar 'Arka Kalyan' were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA